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Abstract
Inhomogeneous nonlinear Schrödinger equations are constructed
systematically using the covariance with respect to the Darboux
transformation. The Darboux invariants and the spectral parameter
are functions of time and space, which result in equations describing
nonautonomous solitons moving in generalized external potentials. All the
known inhomogeneous nonlinear Schrödinger equations, as well as new ones
of a more generalized form, can be derived from the constructed equation.
One- and two-soliton solutions are explicitly constructed using the Darboux
transformation.

PACS numbers: 42.65.Tg, 05.45.Yv

1. Introduction

Recently, much interest has arisen on the study of inhomogeneous nonlinear Schrödinger
(NLS) equations [1–25]. They describe real physics problems occurring in the media of
inhomogeneity and are more realistic compared to the standard NLS equation. Historically,
the inhomogeneous NLS equation first appeared in [1], which studied the transmission of
solitons through the varying dispersion-managed optical fiber. After that, various attempts
have been made to construct and study the inhomogeneous NLS equations, including those
having an integrable property and multi-soliton solutions [1–25]. These describe solitons in
a nonuniform medium such as soliton lasers, soliton switches and matter-wave solitons of
Bose–Einstein condensates with magnetically tuned interatomic interaction.

Nonautonomous NLS equations with generalized external potentials can be written as

i∂̄ψ + k∂2ψ + 2a2k|ψ |2ψ + (iγ + δ)∂ψ + (i� + �)ψ = 0, (1)

where ∂ ≡ ∂/∂z and ∂̄ ≡ ∂/∂z̄ with soliton time z and soliton moving distance z̄ respectively.
The coefficients k, a, γ, δ, �,� are real functions of z and z̄ describing inhomogeneities, but
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they need to be constrained appropriately for the equations to be integrable. The differential
equations considered in this paper have z̄-varying coefficients, and are called nonautonomous
as they depend on the independent variable. In the physical context, the z-dependence of
coefficients is connected with external potentials such as trapping or reflecting potentials. The
NLS equation (1) has a complex form of coefficients, and is named as the nonautonomous
equation with generalized external potentials. The present work can be thought of as an
extended version of the nonautonomous solitons in external potentials dealt in [21].

In the literature, various specific forms of coefficients in equation (1) have been
constructed, which have soliton or solitary solutions. Generally, the dispersion and nonlinearity
coefficients have been considered as a function of z̄ only [2]. Besides, the z-dependence of
� has appeared to be limited for the polynomial type only. In this paper, we consider more
generalized inhomogeneous NLS equations with both z- and z̄-dependent coefficients. These
types of equations can describe situations of physical interest, for example, in the field of
Bose–Einstein condensates with spatial inhomogeneities and time-dependent potentials and
nonlinearities [3]. For this purpose, we use the principle of Darboux covariance [26–31] to
construct the Lax pair and the variable spectral parameter. The invariants of the Darboux
transformation (DT) determine some matrix elements of the Lax pair, which were found to be
effective in constructing nonlinear equations.

The principle of Darboux covariance has been used to study various integrable nonlinear
equations, which include those associated with the SU(2) linear system [26], GL(2) system
[27], time- and space-dependent Darboux invariants [28], its generalization to the (2 + 1)-
dimensional system [29] and inhomogeneous systems with the variable spectral parameter
[30, 31]. Recently a realistic program for constructing the inhomogeneous equations was
introduced in [31], and was used to construct integrable equations having a specific form of
inhomogeneity coefficients. However, the full implementation of this program for the NLS
equations has not been achieved yet. In this paper, we will employ this program to construct
the most generalized form of NLS equations allowed by the principle of Darboux covariance.
The distinguishing feature of the present result compared to the previous ones [28, 31]
is that the coefficients of equations are obtained from nine arbitrary functions, which will be
called as the inhomogeneity functions. Previously, this type of functions has been constrained
to each other, and solving these constraints was a difficult problem [31]. Only a specific form
of coefficients of nonlinear equations has been obtained by solving the constraints for special
cases. On the other hand, the nine inhomogeneity functions of this paper give coefficients of
most generalized NLS equations allowed by the Darboux covariance principle.

We describe the Lax pair in section 2 and the spectral parameter in section 5. They
give the most generalized form of NLS equations in section 3. This construction is based
on the covariance principle with respect to the DT, whose explicit form is introduced in
section 4. One- and two-soliton solutions are constructed in sections 6 and 7 for the most
generalized equation with nine inhomogeneity functions. Some specific forms of coefficients
are considered in section 8.

2. Lax pair

To construct equations with generalized coefficients, we consider a system having the variable
spectral parameter λ = λ(z, z̄). It satisfies certain relations of the following type, given by
αi = αi(z, z̄), βi = βi(z, z̄), i = 0, 1:

∂λ = α1λ + α0, ∂̄λ = β1λ + β0. (2)

2



J. Phys. A: Math. Theor. 42 (2009) 335202 K H Han and H J Shin

The NLS equation is described by the associated linear equations:

0 = ∂� + U(λ)� ≡ ∂� + (λU1 + U0)�,

0 = ∂̄� + V (λ)� ≡ ∂̄� + (λ2V2 + λV1 + V0)�.
(3)

Some matrix elements of the Lax pair U(λ), V (λ) are related to the Darboux invariants and
lead to the following form [28, 30, 31]:

U(λ) =
(

i
2 (λf + l) a eiθψ

−a e−iθψ∗ − i
2 (λf + l)

)
(4)

and

V (λ) =
(

i
2 (λ2f 2k + λh − 2ka2|ψ |2 + 2g) χ + λf ka eiθψ

−χ∗ − λf ka e−iθψ∗ − i
2 (λ2f 2k + λh − 2ka2|ψ |2 + 2g)

)
. (5)

Here, ψ is the field variable of the NLS equation and

χ = i eiθ

[(
a

2
∂k + k∂a + ika∂θ − i

a

f
h + ilka

)
ψ + ka∂ψ

]
,

g = 1

4
N − 1

8
b2

1K
2 +

1

8
(∂̄b1)K

2 +
1

8

h2

kf 2
− 1

4
∂̄H +

1

2
∂̄L +

1

2
b0K + bg,

(6)

where

K = K(z, z̄) =
∫

1√
k

dz, P = P(z, z̄) =
∫

∂̄K√
k

dz, N = N(z, z̄) =
∫

∂̄2K√
k

dz,

H = H(z, z̄) =
∫

h

kf
dz, L = L(z, z̄) =

∫
l dz,

(7)

and b1 = b1(z̄), b0 = b0(z̄), bg = bg(z̄) are arbitrary functions of z̄. In equations (4) and (5),
the Darboux invariants, f = f (z, z̄), l = l(z, z̄), k = k(z, z̄), h = h(z, z̄), are arbitrary real
functions, which are introduced to satisfy the invariant conditions of DT imposed on U and V

[28, 30, 31]. a = a(z, z̄) and θ = θ(z, z̄) are real, and are related to defining the field variable
ψ = ψ(z, z̄). An identity among P,K,N is useful in the following:

∂̄P = ∂̄

∫
∂̄K dK =

∫
∂̄2K dK +

∫
∂̄K d(∂̄K) = N +

1

2
(∂̄K)2. (8)

In addition, αi and βi in equation (2) are given by

α1 = −1

2
∂ ln(f 2k),

α0 = −hα1 + fβ1 − ∂h + ∂̄f

2f 2k
,

β1 = −1

2
∂̄ ln(f 2k) + b1,

β0 = 1

2f
√

k
(∂̄2K + ∂̄b1K − b2

1K + 2b0) − 1

2f 2k

(
∂̄h − h∂̄ ln f − 1

2
h∂̄ ln k − b1h

)
.

(9)

These nine inhomogeneity functions f, l, k, h, a, θ, bg, b0, b1 are real and arbitrary, which
determine the Lax pair U(λ), V (λ) as well as the spectral parameter λ. They satisfy the
compatibility conditions in sections 3 and 5, which guarantee the existence of � and λ, and
lead to the integrable equation. By using specific forms of the inhomogeneity functions,
various NLS equations with different types of coefficients and spectral parameters can be
obtained; see section 8.

3
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3. Inhomogeneous NLS equations

The compatibility of the Lax pair in equation (3), i.e. ∂∂̄� = −∂(V �) = ∂̄∂� = −∂̄U�,
gives the NLS equation of motion (1) with

δ = 3

2
∂k + 2k∂ ln a,

γ = 2k∂θ + 2kl − h

f
,

� = 1

2
∂2k − kl2 − k(∂θ)2 − 2kl∂θ +

hl

f
+

3

2
∂k∂ ln a +

h∂θ

f
− 1

4

h2

kf 2
+

1

4
b2

1K
2

− b0K +
1

2
∂̄H − ∂̄L − 2bg − 1

4
K2∂̄b1 − 1

2
N +

k∂2a

a
− ∂̄θ,

� = 2kl∂ ln a − h

f
∂ ln a + 2k∂θ∂ ln a + ∂̄ ln a +

3

2
l∂k +

3

2
∂θ∂k +

1

2

h

f
∂ ln f

− 1

2

∂h

f
− 1

4

h

f
∂ ln k +

1

4
∂̄ ln k + k∂l + k∂2θ − 1

2
b1. (10)

We note that the equation resulting from the compatibility of the Lax pair does not contain
the spectral parameter λ, which ensures the integrability of the inhomogeneous NLS equation
with equation (10). This is the main formula of this paper, giving a generalized form of
coefficients in equation (10) based on the principle of Darboux covariance. Previous studies
on inhomogeneous NLS equations [1–25] have introduced coefficients such that k, a and λ

were taken to be functions of z̄ only. Only � was seen to have z-dependence, though its
dependence is limited to the polynomial form. Though the coefficients has been of a realistic
form with wide applicability, more generalized coefficients with both z- and z̄-dependences
should extend the application spectrum of the inhomogeneous NLS equation. In the present
study, various forms of inhomogeneity coefficients will be obtained by taking appropriate
inhomogeneity functions k, l, h, f, a, θ, b1, b0, bg .

4. Darboux transformation

The Lax pair was shown to be consistent with the following DT [32, 33]:

� → �[N] = S(λ, λ1)

[
λ − λ∗

1 − (λ1 − λ∗
1)

�1�
†
1

�
†
1�1

]
� ≡ S(λ, λ1)[λ − σ ]�, (11)

where the two-component column matrix �1 is a solution to equation (3) at a specific value
of λ = λ1, and

S(λ, λ1) = (λ2 − (λ1 + λ∗
1)λ + λ1λ

∗
1)

−1/2. (12)

It can be explicitly checked that f, l, k, h in U and V are Darboux invariants, and they are
consistent with the DT in equation (11).

Under the DT, ψ transforms to a new field ψ [N], which can be obtained by considering
the transformation property of U0:

U
[N]
0 =

(
i
2 l a eiθψ [N]

a e−iθψ [N]∗ − i
2 l

)
= U0 + [U1, σ ], (13)

such that

ψ [N] = ψ + i
f

a
e−iθσ1,2. (14)

This formula will be used to construct multi-soliton solutions in sections 6 and 7.
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5. Spectral parameter

It can be explicitly checked that αi, βi in equation (9) satisfy the compatibility equation,
∂∂̄λ = ∂(β1λ + β0) = ∂̄∂λ = ∂̄(α1λ + α0), which ensures the existence of λ = λ(z, z̄).
Explicitly, αi, βi in equation (9) satisfy

∂̄α1 = ∂β1 + α1β1, ∂̄α0 + α1β0 = ∂β0 + α0β1. (15)

Equation (2) can be integrated to give the variable spectral parameter

λ = −1

2

h

f 2k
+

1

2

1

f
√

k
(∂̄K + b1K + 2�), (16)

where

� = �(zb) =
(∫

b0 e− ∫
b1 dz̄ dz̄ + μ

)
e
∫

b1 dz̄, (17)

where μ is the so-called hidden spectral parameter [34–36].

6. One-soliton

Having formulated the NLS equation as the compatibility condition of the linear
equations (3), we can use the DT in section 4 to generate a new solution from a known one. To
obtain the one-soliton solution, we start with ψ = 0. Then, the solution of linear equations in
equation (3) becomes

� = exp

[
i

2

(
H

2
− P

2
− b1

4
K2 − �K − L −

∫
(�2 + 2bg) dz̄

) (
1 0
0 −1

)]
�0

≡ exp

[
i

2
�

(
1 0
0 −1

)]
�0, (18)

where �0 is a constant matrix. �1 in equation (11) is obtained from equation (18) by taking
� = �1, where �1 is obtained by inserting a specific complex value μ = μ1 (μ1 = μ1r +iμ1i )

into � in equation (16). All functions (H, P, b0, b1, . . .) in �1 are real-valued, except �1

which is �1 = �1r + i�1i . Then �1 in equation (18) becomes complex-valued such that
�1 = �1r + i�1i with

�1r = H

2
− P

2
− b1

4
K2 − �1rK − L −

∫ (
�2

1r − �2
1i + 2bg

)
dz̄,

�1i = −�1iK − 2
∫

�1r�1i dz̄,

(19)

and (we take �0 = ( 1
1

)
for simplicity)

�1 = �|μ=μ1 = exp

[
1

2
(−�1i + i�1r )

(
1 0
0 −1

)]
�0 =

(
exp

[
1
2 (−�1i + i�1r )

]
exp

[− 1
2 (−�1i + i�1r )

]
)

. (20)

By using the definition of σ in equation (11) and utilizing �1, we obtain

σ = λ∗
1 +

1

2
(λ1 − λ∗

1)sech�1i

(
exp(−�1i ) exp(i�1r )

exp(−i�1r ) exp(�1i )

)
, (21)

where λ1 is obtained from equation (16) by substituting � = �1.
Finally, equation (14) gives the one-soliton solution ψ(1):

ψ(1)(z, z̄) = ψ [N] = − μ1i

a
√

k
sech�1i exp

(
i�1r − iθ +

∫
b1 dz̄

)
. (22)

5
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We explicitly check that equation (22) satisfies the NLS equation (1) with (10) using the
symbolic package ‘MAPLE’. The one-soliton solution of the inhomogeneous NLS equation
shares some important properties of the soliton solution with the standard NLS equation such
that it is stable and survives the collision between them; see section 7.

7. Two-soliton

To calculate the two-soliton solution, we need a solution �[N] of equation (3) with ψ = ψ(1)

to obtain �2 = �[N]
μ=μ2

. The DT in equation (11) gives the required solution such that

�2 = �[N]|μ=μ2=μ2r +iμ2i
=

[
λ2 − λ∗

1 − (λ1 − λ∗
1)

�1�
†
1

�
†
1�1

]
�|μ=μ2 , (23)

where λ2 is given by equations (16) and (17) with μ = μ2 = μ2r + iμ2i . Then the two-soliton
solution ψ(2) is given by equation (14) [4, 9, 17, 28]:

ψ(2) = ψ(1) + i
f

a
e−iθ (λ2 − λ∗

2)

(
�2�

†
2

�
†
2�2

)
12

. (24)

With �1r , �1i in equation (19) and similarly defined �2r , �2i (using μ2 instead of μ1 in
�1r , �1i), we can calculate the two-soliton solution such that

ψ(2) = i

a
√

k
e−iθ+

∫
b1 dz̄ (A sinh �2i + iB cosh �2i ) ei�1r − (A sinh �1i + iC cosh �1i ) ei�2r

D cosh �1i cosh �2i − 2μ1iμ2i[sinh �1i sinh �2i + cos(�2r − �1r )]
,

(25)

where

A = 2μ1iμ2i (μ2r − μ1r ), B = μ1i

[
μ2

1i + (μ2r − μ1r )
2 − μ2

2i

]
,

C = μ2i

[
μ2

1i − (μ2r − μ1r )
2 − μ2

2i

]
, D = μ2

1i + (μ2r − μ1r )
2 + μ2

2i .
(26)

8. Special cases

8.1. Case of δ = γ = 0

First, we introduce a set of the inhomogeneity functions, which results in an inhomogeneous
NLS equation without the ∂ψ term. For this, we take

a = ba(z̄)

k(z, z̄)3/4
, θ = 1

2
H − L + bθ (z̄), (27)

where ba(z̄) and bθ (z̄) are arbitrary functions. Then, equation (10) gives δ = γ = 0 and

� = 1

4
b2

1K
2 − b0K − 2bg − 1

4
∂̄b1K

2 − 1

2
N +

3

16

(∂k)2

k
− ∂̄bθ − 1

4
∂2k,

� = ∂̄ ln ba − 1

2
b1 − 1

2
∂̄ ln k.

(28)

Equation (1) with these coefficients is an inhomogeneous NLS equation, which was widely
studied to describe physical systems with pumping or attenuation effects (� �= 0) or systems
lying in a potential (� �= 0). We note that various forms of k(z, z̄) are possible. For example,
taking k(z, z̄) = k1(z)k2(z̄) results in �i = −�ik

−1/2
2

∫
k

−1/2
1 dz − 2

∫
�r�i dz̄, which gives

a nontrivial z-dependence of soliton solutions.

6
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8.2. Case of δ = γ = 0, k(z, z̄) = k2(z̄)

In the literature, there appear NLS equations where k depends on k2(z̄) only. (In fact, the
general case of k = k(z, z̄) has not appeared.) They are related to the integrable Gross–
Pitaevskii equation with time dependences and/or with the Feshbach resonance management
[5]. In this case, they are described by following equation:

i∂̄ψ + k2∂
2ψ + 2

b2
a√
k2

|ψ |2ψ + i

(
−1

2
∂̄ ln k2 − 1

2
b1 + ∂̄ ln ba

)
ψ + �ψ = 0, (29)

where

� =
(

− 1

16
(∂̄ ln k2)

2 +
1

8
∂̄2 ln k2 +

1

4
b2

1 − 1

4
∂̄b1

)
z2 − b0√

k2
z − 2bg − ∂̄bθ . (30)

Here k2, b0, b1, bg, ba, bθ are arbitrary functions of z̄. Radha et al [4] studied an NLS equation
with bg = −∂̄bθ /2 such that no z0-term appears in �.

8.3. Case of δ = γ = 0, z2-dependent �

A more specialized form of equation (29), as seen in the following, was frequently studied,
especially by using the similariton approach [6–11]:

i∂̄ψ = −k2

2
∂2ψ + γ̂ |ψ |2ψ +

1

2
M̂z2ψ +

i

2
(ĝ + ∂̄ ln k2)ψ, (31)

where ĝ = ĝ(z̄) and

γ̂ = −
(

8

k2

)1/2

exp

(
−

∫
(ĝ − b1) dz̄

)
, M̂ = 1

k2

(
∂̄b1 − b2

1 − 1

2

∂̄2k2

k2
+

3

4

(∂̄k2)
2

k2
2

)
.

(32)

This case corresponds to taking the following inhomogeneity functions in addition to equation
(27):

k(z, z̄) = k2(z̄)/2, bg = −∂̄bθ/2, b0 = 0, ba = exp

(
−

∫
(ĝ − b1) dz̄/2

)
.

(33)

The equation describes a physical system having inhomogeneous dispersion.
A one-soliton solution can be obtained from equations (22) and (19) by substituting the

inhomogeneity functions in equation (33) such that

ψ(1) = −k2

2

(1/4)

μ1i Â
(1/2)sech

[√
2

k2
μ1i Â(z − l̂)

]
exp

(
i�̂ +

∫
ĝ dz̄/2

)
, (34)

where

Â = exp

(∫
b1 dz̄

)
, l̂ = −

√
2k2μ1r

∫
Â2 dz̄/Â,

�̂ = − 1

2k2

(
b1 − 1

2
∂̄ ln k2

)
z2 −

√
2

k2
μ1r Âz +

(
μ2

1i − μ2
1r

) ∫
Â2 dz̄.

(35)

It is interesting to compare this solution with that obtained by the similariton approach.
The one-soliton solution in [6–8] corresponds to the special case of k2 = 1 in equations (34)
and (35). In this case, the functions ĝ, M̂, Â, l̂, �̂ satisfy exactly the same relation in equations
(5)–(8) of [6]. It thus means that equation (31) with k2 = 1 is in fact integrable, though it was
obtained by the similariton approach.

7
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8.4. Case of δ = γ = � = 0

Many of the similariton approaches [12–16] treat the case of δ = γ = � = 0. Finding a
general solution for k(z, z̄), which satisfies the condition � = 0 in equation (28), is difficult.
In this paper, we treat a simple case of k(z, z̄) = k1(z)k2(z̄). Then, k1 should satisfy certain
differential equations, which is found to have two cases.

Case (1). k1(z) ≡ s(z)2 satisfies (α is an arbitrary constant)

d3s(z)

dz3
= α

2s(z)2
. (36)

In this case, we should take (in addition to equation (27))

b1 = 1

2

∂̄k2

k2
+

c0k2

1 − c0
∫

k2 dz̄
, b0 = −α

4
k

3/2
2 , bg = −1

2
∂̄bθ . (37)

This inhomogeneity function gives an equation

i∂̄ψ + s2k2∂
2ψ + 2

b2
a

sk
1/2
2

|ψ |2ψ + i�ψ = 0, (38)

where

� = ∂̄

[
−3

4
ln k2 +

1

2
ln

{
1 − c0

∫
k2 dz̄

}
+ ln ba

]
. (39)

The coefficient � is the same type found in [12], but the dispersion and nonlinearity coefficients
now have both z- and z̄-dependences. The NLS equation in [12, 16–20] can be obtained by
taking α = 0 and s(z) = 1 in equation (38).

Case (2). k1(z) ≡ s(z)2 satisfies (α is an arbitrary constant)

d3s(z)

dz3
= −2

α

s(z)2

√(
ds(z)

dz

)2

− 2s(z)
d2s(z)

dz2
. (40)

In these cases, b1, bg are taken as in equation (37), while b0 = 0. This case gives an NLS
equation in (38) with

� = ∂̄

[
−3

4
ln k2 + ln ba

]
+ αk2 tan

(
c − 2α

∫
k2 dz̄

)
. (41)

When we take c = π/2 + 2α/c0, α → 0, equation (41) reduces to equation (39).
We note that in both cases of (1) and (2), the α = 0 limit corresponds to taking

k1(z) = (d1z
2 + 2d2z + d3)

2. In this case, the one-soliton solution is

ψ(1) = −(
k1k

3
2

)1/4 μ1i

ba

(
1 − c0

∫
k2 dz̄

) sech

[
μ1i

1 − c0
∫

k2 dz̄

(
Z + 2μ1r

∫
k2 dz̄

)]

× exp

[
i

1 − c0
∫

k2 dz̄

(
−c0

4
Z2 − μ1rZ +

(
μ2

1i − μ2
1r

) ∫
k2 dz̄

)]
, (42)

where

Z = 1√
d1d3 − d2

2

tan−1 d1z + d2√
d1d3 − d2

2

. (43)

Z reduces to z for d2 = 0, d3 = 1, d1 → 0. In obtaining the above expressions, we take
various integral constants of K,P,H,L,N in equation (7) as zero. The one-soliton solution
in [15] is different from equation (42) to the extent of these constants.

8



J. Phys. A: Math. Theor. 42 (2009) 335202 K H Han and H J Shin

8.5. Case of δ = γ = � = 0

To have � = 0 in equation (28), we need (in addition to equation (27))

k(z, z̄) = k1(z)k2(z̄), b1 = 2∂̄ ln ba − ∂̄ ln k2. (44)

In this case, k1(z), k2(z̄) can be chosen arbitrarily, and the NLS equation becomes

i∂̄ψ + k1(z)k2(z̄)∂
2ψ + 2

b2
a√

k1(z)k2(z̄)
|ψ |2ψ + �ψ = 0, (45)

with

� = 1

k2

(
3

16
(∂̄ ln k2)

2 +
3

8
∂̄2 ln k2 − 1

2
∂̄2 ln ba + (∂̄ ln ba)

2 − ∂̄ ln ba∂̄ ln k2

)(∫
1√
k1

dz

)2

− b0√
k2

(∫
1√
k1

dz

)
− 2bg − 1

4
k2∂

2k1 +
3k2

16k1
(∂k1)

2 − ∂̄bθ . (46)

Especially, a special case of k1 = 1 in equations (45) and (46) gives the NLS equation
and one-soliton solution of [21]. By substituting f = 1, h = (∂̄K +b1K)

√
k in equation (16),

we obtain the spectral parameter introduced in [21]. We note that f, h do not appear in the
NLS equation (45) and in the one- and two-soliton solutions either. It shows that a different
choice of f, h results in the same system in this case. In fact, the relation between θ and H in
equation (27) results in a cancellation of f, h in γ,�,� in (10).

Results of [22] can be obtained by taking k1 = k2 = 1, bθ = 0, b2
a = c eqz̄/(d e2qz̄ − c′).

This inhomogeneity function gives an NLS equation

i∂̄ψ + ∂2ψ + 2
c eqz̄

d e2qz̄ − c′ |ψ |2ψ +

[
1

4
q2z2 − b0z − 2bg

]
ψ = 0. (47)

Here, b0 and bg are arbitrary z̄-dependent functions, though Khawaja [22] treats them as
constants. Khawaja [22] also considers the case b2

a = c/(cz̄ + c′), which gives an NLS
equation without a z2-dependent term. A one-soliton solution lying on a continuous wave was
studied in [23] for this type of NLS equation. Similarly, results of [24] can be obtained by
taking k1 = k2 = ba = 1, bθ = bg = 0.

8.6. Case of δ = � = 0

There exist many possibilities on inhomogeneity functions which give NLS equations with
δ = � = 0. Here, we confine ourselves to the simple case of f (z, z̄) = 1, l(z, z̄) =
0, h(z, z̄) = h1(z)h2(z̄), k(z, z̄) = k1(z)k2(z̄), θ(z, z̄) = θ1(z)θ2(z̄), b1(z̄) = (∂̄ ln k2)/2. To
have δ = 0, we need to take a(z, z̄) = ba(z̄)/[k1(z)k2(z̄)]3/4. � = 0 requires more stringent
conditions on k1, k2, h1, h2, θ1, θ2, b0, bg . We consider four cases of k1, h1 here.

Case (1). k1 = h1 = 1
In this case, we take inhomogeneity functions bg, b0, θ1, θ2 as

bg = −1

8

h2
2

k2
, b0 = −1

2

h2∂̄k2

k
3/2
2

+
1

2

∂̄h2√
k2

+
1

2

h2√
k2

( ∫
k2 dz̄ + c

) ,

θ1 = z2, θ2 = 1

4

1∫
k2 dz̄ + c

,

(48)

while k2, h2 are arbitrary. These inhomogeneity functions give an NLS equation,
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i∂̄ψ + k2∂
2ψ + i

(
z∂̄ ln

(∫
k2 dz̄ + c

)
− h2

)
∂ψ + 2

b2
a√
k2

|ψ |2ψ

+ i∂̄

(
1

2
ln

(∫
k2 dz̄ + c

)
+ ln ba − 3

4
ln k2

)
ψ = 0. (49)

This equation was studied in [21, 25].

Case (2). k1 = 1, h1 = c1 − z

Case (3). k1 = z2, h1 = c1z − z ln z

Case (4). k1 = z4, h1 = c1z
2 + z

In cases of (2), (3) and (4), we take inhomogeneity functions as bg = b0 = θ1 = θ2 =
0, h2 = ∂̄ ln(

∫
k2 dz̄ + c), while k2 is arbitrary. These cases give the following equation (with

appropriate k1, h1 for each case), which have z-dependent dispersion and nonlinearity:

i∂̄ψ + k1k2∂
2ψ − ih1∂̄ ln

(∫
k2 dz̄ + c

)
∂ψ + 2

b2
a√

k1k2
|ψ |2ψ

+ i∂̄

(
1

2
(h1∂ ln k1 − ∂h1) ln

(∫
k2 dz̄ + c

)
+ ln ba − 3

4
ln k2

)
ψ = 0. (50)

9. Discussion

In this paper, we study nonautonomous NLS equations with coefficients of both time and
space dependences by constructing the Lax pair using the principle of Darboux covariance.
A similar study on an NLS equation has appeared [3], but that equation was not integrable.
The most interesting feature of the present study is that there are nine arbitrary inhomogeneity
functions. These inhomogeneity functions satisfy the compatibility condition of the Lax
pair, which guarantee the existence of � in equation (3). They also satisfy the compatibility
condition in equation (15) leading to the spectral parameter in equation (16). The DT allows
us to write down N-soliton solutions (possibly in a matrix determinant form; see for example
[37–42]). One- and two-soliton solutions for equations with time- and space-modulated
coefficients are explicitly constructed.

This paper only considers the case of β2 = 0 in equation (2). A more general type of
the coupling term,

∫
β2|ψ |2 dzψ , results when we consider a spectral parameter described

by β2 �= 0 [31]. We do not consider this possibility, because this type of coupling term
is not related directly to the physical systems of inhomogeneous fiber or the Bose–Einstein
condensates in a potential.

The nonlinear NLS equations presented in this paper are constructed using the principle
of Darboux covariance and are thus integrable. The integrability allows us to construct various
types of solutions including the cnoidal waves, the N-phase waves and solitons lying on a
cnoidal wave [43].

The generalized higher order NLS equation with variable coefficients is considered in
[19, 44–46] as a soliton control system. Similarly, a derivative nonlinear Schrödinger equation
with variable coefficients is studied in [47]. Our approach can be generalized to construct
these types of equations with more generalized coefficients of time and space modulations.
Another generalization of the NLS equation is the construction of multi-component equations.
An important development of multi-component equations has been based on group theoretical
extension, and finds many interesting physical applications as in [32, 33, 45, 48, 49]. It
would be interesting to apply the present approach to multi-component NLS equations of the
inhomogeneous type.
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